Package: SCDA 0.0.2

SCDA: Spatially-Clustered Data Analysis

Contains functions for statistical data analysis based on spatially-clustered techniques. The package allows estimating the spatially-clustered spatial regression models presented in Cerqueti, Maranzano \& Mattera (2024), "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe", arXiv preprint 2407.15874 <doi:10.48550/arXiv.2407.15874>. Specifically, the current release allows the estimation of the spatially-clustered linear regression model (SCLM), the spatially-clustered spatial autoregressive model (SCSAR), the spatially-clustered spatial Durbin model (SCSEM), and the spatially-clustered linear regression model with spatially-lagged exogenous covariates (SCSLX). From release 0.0.2, the library contains functions to estimate spatial clustering based on Adiajacent Matrix K-Means (AMKM) as described in Zhou, Liu \& Zhu (2019), "Weighted adjacent matrix for K-means clustering", Multimedia Tools and Applications, 78 (23) <doi:10.1007/s11042-019-08009-x>.

Authors:Paolo Maranzano [aut, cre, cph], Raffaele Mattera [aut, cph], Camilla Lionetti [aut, cph], Francesco Caccia [aut, cph]

SCDA_0.0.2.tar.gz
SCDA_0.0.2.zip(r-4.5)SCDA_0.0.2.zip(r-4.4)SCDA_0.0.2.zip(r-4.3)
SCDA_0.0.2.tgz(r-4.4-any)SCDA_0.0.2.tgz(r-4.3-any)
SCDA_0.0.2.tar.gz(r-4.5-noble)SCDA_0.0.2.tar.gz(r-4.4-noble)
SCDA_0.0.2.tgz(r-4.4-emscripten)SCDA_0.0.2.tgz(r-4.3-emscripten)
SCDA.pdf |SCDA.html
SCDA/json (API)

# Install 'SCDA' in R:
install.packages('SCDA', repos = c('https://paolomaranzano.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • Data2010 - Spatial dataset to replicate the results for 2010 from Cerqueti, R., Maranzano, P. & Mattera, R. "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe". arXiv preprints (<https://doi.org/10.48550/arXiv.2407.15874>
  • Data2020 - Spatial dataset to replicate the results for 2020 from Cerqueti, R., Maranzano, P. & Mattera, R. "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe". arXiv preprints
  • listW - List of 222 spatial weights

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.88 score 38 scripts 525 downloads 8 exports 77 dependencies

Last updated 1 months agofrom:29687864eb. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winNOTENov 22 2024
R-4.4-macNOTENov 22 2024
R-4.3-winNOTENov 22 2024
R-4.3-macNOTENov 22 2024

Exports:Elbow_finderSC_AMKMSCSR_EstimSCSR_InfoCritSpatReg_ExtractSpatReg_GoFSpatReg_PerfSpatReg_PseudoR2

Dependencies:abindbayestestRbootclassclassIntclicodacodetoolscolorspacecpp11crayoncurldatawizardDBIdeldirdplyre1071fansifarvergenericsggplot2ggspatialgluegtablehmsinsightisobandjpegKernSmoothlabelinglatticeLearnBayeslifecyclemagrittrMASSMatrixmgcvmultcompmunsellmvtnormNbClustnlmeperformancepillarpkgconfigpngprettyunitsprogressproxypurrrR6RColorBrewerRcpprlangrosms2sandwichscalessfspspatialregspDataspdepstringistringrsurvivalTH.datatibbletidyrtidyselectunitsutf8vctrsviridisLitewithrwkzoo

Readme and manuals

Help Manual

Help pageTopics
Spatial dataset to replicate the results for 2010 from Cerqueti, R., Maranzano, P. & Mattera, R. "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe". arXiv preprints (<https://doi.org/10.48550/arXiv.2407.15874>Data2010
Spatial dataset to replicate the results for 2020 from Cerqueti, R., Maranzano, P. & Mattera, R. "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe". arXiv preprints (<https://doi.org/10.48550/arXiv.2407.15874>)Data2020
Automatically selects the optimal number of clusters based on elbow criterion.Elbow_finder
List of 222 spatial weights (style = "W", zero.policy=TRUE) used in Cerqueti, R., Maranzano, P. & Mattera, R. "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe". arXiv preprints (<https://doi.org/10.48550/arXiv.2407.15874>)listW
Spatial Clustering for sf dataSC_AMKM
Estimate spatially-clustered spatial regression modelsSCSR_Estim
Automatically select the optimal number of clusters based on likelihood information criteria (i.e., AIC, BIC and HQC) for a given SCSR model.SCSR_InfoCrit
Extracts numerical values for the estimated regression parameters (i.e., spatial coefficients, regression coefficients, and residuals variance) for a given spatial regression model of class 'lm' or 'Sarlm'.SpatReg_Extract
Computes a set of goodness-of-fit indices (e.g., likelihood-based information criteria, Wald and LR test, Moran's I statistic) for a given spatial regression model of class 'lm' or 'Sarlm'.SpatReg_GoF
Computes a set of in-sample performance metrics (i.e., AIC, BIC, RMSE, Sigma, and Pseudo R^2) for a given spatial regression model of class 'lm' or 'Sarlm'.SpatReg_Perf
Computes the Pseudo R^2 metric for a given spatial regression model of class 'lm' or 'Sarlm'.SpatReg_PseudoR2